Jump to content

A Review of the Effects of Haze on Solar Photovoltaic Performance

From Appropedia
Source data
Type Paper
Language English
Cite as Citation reference for the source document. Seyyed Ali Sadat, Bram Hoex, Joshua M. Pearce, A Review of the Effects of Haze on Solar Photovoltaic Performance, Renewable and Sustainable Energy Reviews, 167, 2022,112796. https://doi.org/10.1016/j.rser.2022.112796. open access

Solar photovoltaic (PV) deployments are growing rapidly to provide a sustainable source of electricity, but their output is strongly impacted by environmental phenomena such as soiling and low irradiance conditions induced by haze from urban sources, dust, and bushfire smoke. This review examines the effects of haze on PV performance, highlights significant results, and identifies apparent research gaps in the current literature. In addition to the severe health issues caused by industrial exhausted aerosol, dust storms particles, and bushfire smoke, reduction in irradiance (in some cases up to 80%) is the most dominant impact of these sources of haze. Haze also causes changes in the received solar spectrum, and higher bandgap PV materials are more affected by the presence of haze and aerosols in the atmosphere by 20-40% than low bandgap semiconductors. In many cities throughout the world, pollution-related haze causes substantial annual revenue loss to PV operators. In addition, haze imposes severe effects on direct irradiance; therefore, tracking systems and concentrated PV systems are most affected. These technical impacts of haze all indicate the need for careful customization of PV systems for specific locations. In addition, to increase global PV output, it is clear that air pollution control regulations such as China's national policies against air pollution and eco-friendly international actions such as COP26 should be employed and executed. Further studies are needed including indoor experiments, forecasting future implications of aerosols on PV energy conversion, and performing energy policy analysis to identify associated challenges and propose practical strategies.

Highlights[edit | edit source]

  • Solar photovoltaic (PV) strongly impacted by environmental phenomena induced by haze.
  • Industrial exhausted aerosol, dust storms particles, bushfire smoke cut irradiance.
  • Haze changes in received solar spectrum, and higher bandgap PV 20-40% cut.
  • Pollution-related haze causes substantial annual revenue loss to PV operators.
  • Haze imposes most severe effects on direct irradiance; tracking + concentrated PV systems.

See also[edit | edit source]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.